Preview

Почвоведение и агрохимия

Расширенный поиск

Роль биоцементации в решении проблем стабилизации почв и секвестрации углерода

https://doi.org/10.51886/1999-740X_2025_4_64

Аннотация

Микробиологическое осаждение карбонатов (МОК) представляет собой экологически чистую и перспективную технологию для укрепления грунтов, основанную на активности микроорганизмов, таких как Sporosarcina pasteurii, которые способствуют осаждению карбонатов кальция. Этот процесс включает биологическое взаимодействие бактерий с химическими веществами, такими как мочевина и ионы кальция, что приводит к образованию кальцитовых отложений, которые укрепляют структуру грунта, повышая ее прочность, снижая проницаемость и увеличивая устойчивость к эрозии. В статье рассматриваются виды и механизмы биоцементации, а также ключевые факторы, влияющие на эффективность МОК, включая выбор микроорганизмов, условия среды и состав грунта. Описываются методы оптимизации биоцементации для достижения максимальной эффективности, а также рассматриваются различные области применения технологии, такие как улучшение песчаных и слабых глинистых грунтов. Особое внимание уделяется экологическим аспектам, в частности, применению МОК для секвестрации углерода, что способствует долговременному захоронению углерода в почвах и помогает в борьбе с изменением климата. В заключение обсуждаются перспективы дальнейших исследований и возможные направления для расширения применения этой технологии в строительстве и геотехнике.

Об авторах

А. К. Аманбосын
Казахский научно-исследовательский институт почвоведения и агрохимии имени У.У. Успанова
Казахстан

Аманбосын Алина Қуанышқызы – инженер-микробиолог отдела плодородия и биологии почв

050060, Алматы, пр. аль-Фараби, 75 В



А. А. Курманбаев
Казахский научно-исследовательский институт почвоведения и агрохимии имени У.У. Успанова
Казахстан

Курманбаев Аскар Абылайканович – главный научный сотрудник отдела плодородия и биологии почв, д.б.н., профессор

050060, Алматы, пр. аль-Фараби, 75 В



Список литературы

1. DeJong J.T., Mortensen B.M., Martinez B.C., Nelson D.C. Biomediated soil improvement// Ecological Engineering. – 2010. – Vol. 36, № 2. – P. 197–210.

2. Kurmanbaev A.A., Nagmetova G.Zh., Bizhanova L.Zh., et al. Isolation of ureolytic bacteria promising for microbiologically induced calcium carbonate precipitation// Actual Problems of Humanities and Natural Sciences. – 2017. – Vol. 4, № 1.

3. Patil M., Dalal P.H., Shreedhar S., Dave T.N., Iyer K.R.K. Biostabilization techniques and applications in civil engineering: State-of-the-art// Construction and Building Materials. – 2021. – Vol. 309. – Article ID 125098.

4. Ta Tang C.-S., Yin L.-Y., Jiang N.-J., Zhu C., Zeng H., Li H., Shi B. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review// Environmental Earth Sciences. – 2020. – Vol. 79. – Article № 94.

5. Karol R.H. Chemical grouting and soil stabilization. 3rd ed. – Boca Raton: CRC Press, 2003.

6. Burrell A.L., Evans J.P., De Kauwe M.G. Anthropogenic climate change has driven over 5 million km² of drylands towards desertification// Nature Communications. – 2020. – Vol. 11. – Article № 3853.

7. Harran R., Terzis D., Laloui L. Mechanics, modeling, and upscaling of biocemented soils: A review of breakthroughs and challenges// International Journal of Geomechanics. – 2023. – Vol. 23, № 9.

8. Zhang Y.S., Liu Y., Sun X.D., Zeng W., Xing H.P., Lin J.Z., Kang S.B., Yu L. Application of microbially induced calcium carbonate precipitation (MICP) technique in concrete crack repair: A review// Construction and Building Materials. – 2023. – Vol. 359. – Article № 134313.

9. Bhutange S.P., Latkar M.V., Muhammad S. A review on the potential challenges in the application of biocementation in cement-based materials, possible solutions and way forward// Materials Today Communications. – 2024. – Vol. 38. – Article № 107986.

10. Kumar A., Song H.-W., Mishra S., Zhang W., Zhang Y.-L., Zhang Q.-R., Yu Z.-G. Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review// Chemosphere. – 2023. – Vol. 318. – Article № 137894.

11. Sun X., Wai O.W.H., Xie J., Li X. Biomineralization to prevent microbially induced corrosion on concrete for sustainable marine infrastructure// Environmental Science & Technology. – 2023. – Vol. 58, № 1. – P. 522–533.

12. Saracho A.C., Marek E.J. Uncovering the dynamics of urease and carbonic anhydrase genes in ureolysis, carbon dioxide hydration, and calcium carbonate precipitation// Environmental Science & Technology. – 2024. – Vol. 58, № 2. – P. 1199–1210.

13. Zhu T., Dittrich M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review// Frontiers in Bioengineering and Biotechnology. – 2016. – Vol. 4. – Article 4.

14. Jain S., Fang C., Achal V. A critical review on microbial carbonate precipitation via denitrification process in building materials// Geotechnical and Geological Engineering. – 2021. – Vol. 39. – P. 7529–7551.

15. Lai H., Ding X., Cui M., Zheng J., Chen Z., Pei J., Zhang J. Mechanisms and influencing factors of biomineralization-based heavy metal remediation: A review// Biogeotechnics. – 2023. – Vol. 1, № 4. – Article 100039.

16. Mondal S., Ghosh A.D. Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete// Construction and Building Materials. – 2019. – Vol. 225. – Article 115236.

17. Castanier S., Le Métayer-Levrel G., Perthuisot J.-P. Bacterial roles in the precipitation of carbonate minerals// In: Riding R.E., Awramik S.M. (eds.) Microbial sediments. – Vol. 5. – Berlin: Springer, 2000. – P. 32–39.

18. Dhami N.K., Reddy M.S., Mukherjee A. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites// Journal of Microbiology and Biotechnology. – 2013. – Vol. 23, № 5. – P. 707–714.

19. Anbu P., Kang C.-H., Shin Y.-J., So J.-S. Formations of calcium carbonate minerals by bacteria and its multiple applications// SpringerPlus. – 2016. – Vol. 5. – Article 250.

20. Wang Y.N., Li S.K., Li Z.Y., Garg A. Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator// Acta Geotechnica. – 2023. – Vol. 18. – P. 3273–3285.

21. Payan M., Khoshdel Sangdeh M., Salimi M., Zanganeh Ranjbar P., Arabani M., Hosseinpour I. A comprehensive review on the application of microbially induced calcite precipitation (MICP) technique in soil erosion mitigation as a sustainable and environmentally friendly approach// Results in Engineering. – 2024. – Article 103235.

22. Jain S. Influence of biomass and chemicals on kinetics of ureolysis-based carbonate biomineral precipitation// Environmental Earth Sciences. – 2024. – Vol. 83. – Article 58.

23. Liu S.Y., Wang R.K., Yu J., Peng X.Q., Cai Y.Y., Tu B.X. Effectiveness of the anti-erosion of an MICP coating on the surfaces of ancient clay roof tiles// Construction and Building Materials. – 2020. – Vol. 243. – Article 118202.

24. Rui Y.F., Qian C.X. Characteristics of different bacteria and their induced biominerals// Journal of Industrial and Engineering Chemistry. – 2022. – Vol. 115. – P. 488–502.

25. Dong Z.H., Pan X.H., Tang C.S., Wang D.L., Wang R., Shi B. An efficient microbial sealing of rock weathering cracks using bio-carbonation of reactive magnesia cement// Construction and Building Materials. – 2022. – Vol. 352. – Article 130038.

26. Haouzi F.Z., Esnault-Filet A., Courcelles B. Optimization of microbially induced calcite precipitation (MICP) protocol against erosion// Environmental Geotechnics. – 2020.

27. Siddhartha M., Bikas S.R., Joydeep M. Effect of biologically induced cementation via ureolysis in stabilization of silty soil// Geomicrobiology Journal. – 2021. – Vol. 39, № 1. – P. 1–9.

28. Lv C., Tang C.S., Zhang J.Z., Pan X.H., Liu H. Effects of calcium sources and magnesium ions on the mechanical behavior of MICP-treated calcareous sand: Experi-mental evidence and precipitated crystal insights// Acta Geotechnica. – 2022. – Vol. 18, № 5. – P. 1623–1635.

29. Zheng X.G., Lu X.Y., Zhou M., Huang W., Zhong Z.T., Wu X.H., Zhao B.Y. Experimental study on mechanical properties of root-soil composite reinforced by MICP// Materials. – 2022. – Vol. 15, № 10. – Article 3586.

30. Hu Q.Z., Wang Z.K. Experimental study on microbial solidification of gravel-containing silty clay under different calcium sources// Geofluids. – 2022.

31. Prongmanee N., Horpibulsuk S., Dulyasucharit R., Noulmanee A., Boueroy P., Chancharoonpong C. Novel and simplified method of producing microbial calcite powder for clayey soil stabilization// Geomechanics and Energy Environment. – 2023. – Vol. 35. – Article 100480.

32. Vaskevicius L., Malunavicius V., Jankunec M., Lastauskiene E., Talaikis M., Mikoliunaite L., Maneikis A., Gudiukaite R. Insights in MICP dynamics in urease-positive Staphylococcus sp. H6 and Sporosarcina pasteurii bacterium// Environmental Research. – 2023. – Vol. 234. – Article 116588.

33. Liu B., Xie Y.H., Tang C.S., Pan X.H., Jiang N.J., Singh D.N., Cheng Y.J., Shi B. Bio-mediated method for improving surface erosion resistance of clayey soils// Engineering Geology. – 2021. – Vol. 19. – Article 106295.

34. Yi H.H., Zheng T.W., Jia Z.R., Su T., Wang C.G. Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria// Journal of Crystal Growth. – 2021. – Vol. 564. – Article 126113.

35. Wang Q., Miao Q.M., Liu F., Wang X.W., Xu Q.Y. Coupled effect of microbiologically induced calcium carbonate and biofilms in leachate// Journal of Environmental Management. – 2022. – Vol. 324. – Article 116350.

36. Cheng L., Shahin M.A., Mujah D. Influence of key environmental conditions on microbially induced cementation for soil stabilization// Journal of Geotechnical and Geoenvironmental Engineering. – 2017. – Vol. 143, № 1. – Article 04016083.

37. Ji X.L., Tang C.S., Pan X.H., Cheng Y.J., Shi B. Enhancing biocementation performance in low permeability clayey soil through sand column strategy// Catena. – 2024. – Vol. 245. – Article 108301.

38. Al-Salloum Y., Abbas H., Sheikh Q.I., Hadi S., Alsayed S., Almusallam T. Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar// Saudi Journal of Biological Sciences. – 2017. – Vol. 24, № 2. – P. 286–294.

39. Li J., Tian L.J., Xu Y., Tian Z.F., Zhang Z.D. Study on the solidification effect of dredger fill by microbial-induced calcium precipitation (MICP)// Materials. – 2022. – Vol. 22, № 15. – Article 7891.

40. Milani D., Kiani A., Haque N., Giddey S., Feron P. Green pathways for urea synthesis: A review from Australia's perspective// Sustainable Chemistry for Climate Action. – 2022. – Vol. 1. – Article 100008.

41. Salmon N., Bañares-Alcántara R. Green ammonia as a spatial energy vector: A review// Sustainable Energy & Fuels. – 2021. – Vol. 5, № 11. – P. 2814–2839.

42. Fang C., Achal V. Enhancing carbon neutrality: A perspective on the role of Microbially Induced Carbonate Precipitation (MICP)// Biogeotechnics. – 2024. – Vol. 2, № 2. – Article 100083.

43. Achal V., Mukherjee A., Kumari D., Zhang Q. Biomineralization for sustainable construction: A review of processes and applications// Earth-Science Reviews. – 2015. – Vol. 148. – P. 1–17.

44. Phillips A.J., Lauchnor E., Eldring J., Esposito R., Mitchell A.C., Gerlach R., Cunningham A.B., Spangler L.H. Potential CO₂ leakage reduction through biofilm-induced calcium carbonate precipitation// Environmental Science & Technology. – 2013. – Vol. 47, № 1. – P. 142–149.

45. Tveit S., Pettersson P., Landa-Marbán D. Optimizing sealing of CO₂ leakage paths with microbially induced calcite precipitation under uncertainty// In: ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery. – European Association of Geoscientists & Engineers, 2020. – P. 1–12.

46. Li M., Cheng X., Guo H. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil// International Biodeterioration and Biodegrada-tion. – 2013. – Vol. 76. – P. 81–85.


Рецензия

Для цитирования:


Аманбосын А.К., Курманбаев А.А. Роль биоцементации в решении проблем стабилизации почв и секвестрации углерода. Почвоведение и агрохимия. 2025;(4):64-79. https://doi.org/10.51886/1999-740X_2025_4_64

For citation:


Amanbossyn A.K., Kurmanbayev A.A. The role of biocementation in addressing soil stabilization and carbon sequestration issues. Soil Science and Agrichemistry. 2025;(4):64-79. (In Russ.) https://doi.org/10.51886/1999-740X_2025_4_64

Просмотров: 46

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1999-740X (Print)
ISSN 2959-3433 (Online)