Modern reclaim state of irrigated soils and the method of its study on the example of APC «Azia Agro Group»
https://doi.org/10.51886/1999-740X_2023_1_15
Abstract
In arid and semi-arid regions, including the irrigated areas of the SyrDarya River basin in the southern part of Kazakhstan, due to excessive soil salinization the area of land classified as "abandoned" or "virgin lands" is growing. This causes significant daily socio-economic and environmental issues. Currently, 236.9 thousand hectares, or 15.2% of the 1.55 million hectares, have been removed from circulation due to the deterioration of the irrigated arable land reclamation condition in Kazakhstan's four southern regions. In this regard, it is first and foremost economically viable to identify solutions to the salinity and its spatial distribution problems, and it is also crucial to carefully study their rational application by GIS, which is much more effective than conventional research methods. The main goal of this research was to conduct field studies to assess the current state of reclamation of irrigated soils of the APC “Asia Agro Group”, map soil salinity by high-precision interpolation, and compare the methods of interpolation by the method of IDW and OK. For this, soil samples were collected from layers of 0–20 cm, 20–50 cm, and 50–100 cm per 300 ha of irrigated arable land. The chemical composition of the water extract was used to calculate the degree of salinity and the sodium adsorption coefficient (SAR). The limit of ion toxicity was revealed by statistical analysis techniques after the analysis of sediment data. As a result of the study of soil data, statistical analysis methods were analyzed, showing the limit of ion toxicity threshold. The contours of the saline soils of each layer were then determined by interpolating IDW and OK using the processed soil salinity data from the field survey to generate salinity maps. During the application of these two interpolations, IDW completely covered the values of the chosen mapping points and displayed more thorough salinity contours than the OK interpolation. As a result, in the upper 0-20 cm layer, 224 ha of non-saline, 66 ha of slightly saline, 10 ha of moderately saline, and similar data are obtained for 20-50 cm of soils. In the lower 50-100 cm layer, non-saline - 100 ha, slightly saline - 54 ha, moderately saline - 92 ha and strongly saline - 54 ha, very strongly saline soils were not found.
About the Authors
Zh. M. SmanovKazakhstan
050060, Almaty, 75B, al-Farabi, Ave.
A. I. Suleimenova
Kazakhstan
050060, Almaty, 75B, al-Farabi, Ave.
M. N. Poshanov
Kazakhstan
050060, Almaty, 75B, al-Farabi, Ave.
S. N. Duysekov
Kazakhstan
050060, Almaty, 75B, al-Farabi, Ave.
A. S. Vyrakhmanova
Kazakhstan
050060, Almaty, 75B, al-Farabi, Ave.
References
1. Shrivastava P., Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation// Saudi journal of biological sciences. – 2015. – Т. 22. – № 2. – С. 123-131.
2. Li S. et al. Remediation of saline-sodic soil using organic and inorganic amendments: physical, chemical, and enzyme activity properties //Journal of Soils and Sediments. – 2020. – Т. 20. – С. 1454-1467.
3. Singh A. Soil salinization management for sustainable development: A review// Journal of environmental management. – 2021. – Т. 277. – С. 111383.
4. Eswar D., Karuppusamy R., Chellamuthu S. Drivers of soil salinity and their correlation with climate change// Current Opinion in Environmental Sustainability. – 2021. Т. 50. – С. 310-318.
5. Zaman M. et al. Soil salinity: Historical perspectives and a world overview of the problem//Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. – 2018. – С. 43-53.
6. Mao W. et al. Yellow River sediment as a soil amendment for amelioration of saline land in the Yellow River Delta //Land Degradation & Development. – 2016. – Т. 27. №. 6. – С. 1595-1602.
7. Tokbergenova A., Kiyassova L., Kairova S. Sustainable Development Agriculture in the Republic of Kazakhstan //Polish Journal of Environmental Studies. – 2018. – Т. 27. – №. 5.
8. Suska-Malawska M. et al. Spatial and In-Depth Distribution of Soil Salinity and Heavy Metals (Pb, Zn, Cd, Ni, Cu) in Arable Irrigated Soils in Southern Kazakhstan// Agronomy. – 2022. – Т. 12. – № 5. – С. 1207.
9. Svodnyj analiticheskij otchet o sostoyanii i ispol'zovanii zemel' Respubliki Kazahstan za 2006 god. Astana, 2007, 179 s.
10. Laiskhanov, S. U. et al. A Study of the Effects of Soil Salinity on the Growth and Development of Maize (Zea Mays L.) by using Sentinel-2 Imagery// OnLine Journal of Biological Sciences. – 2022. – Т. 22. – № 3. – С. 323-332.
11. Mazirov M. A. i dr. Kompleksnyj monitoring plodorodiya pochv razlichnyh agrolandshaftov: uchebnoe posobie. – 2020. – P. 5-111.
12. Duan Y. et al. Driving factor identification for the spatial distribution of soil salinity in the irrigation area of the SyrDarya river, Kazakhstan//Agronomy. – 2022. – Т. 12. – № 8. – P. 1912.
13. Allison L. E., Richards L. A. Diagnosis and improvement of saline and alkali soils. – Soil and Water Conservative Research Branch, Agricultural Research Service, US Department of Agriculture, 1954. – № 60. – С. 17-19.
14. Duisekov S. N. et al. The operational method of conducting large-scale salt survey and drawing salinity level maps of irrigated lands of the Akdalinsky array// Biosciences Biotechnology Research Asia. – 2015. – Т. 12. – С. 547-557.
15. Yang Y. et al. Sustainable intensification of high-diversity biomass production for optimal biofuel benefits// Nature Sustainability. – 2018. – Т. 1. – № 11. – С. 686-692.
16. Juan P. et al. Geostatistical methods to identify and map spatial variations of soil salinity// Journal of Geochemical Exploration. – 2011. – Т. 108. – № 1. – С. 62-72.
17. Mousavi S. R. et al. Evaluating inverse distance weighting and kriging methods in estimation of some physical and chemical properties of soil in Qazvin Plain// Eurasian Journal of Soil Science. – 2017. – Т. 6. – № 4. – С. 327-336.
18. Pulatov A. et al. Soil salinity mapping by different interpolation methods in Mirzaabad district, Syrdarya Province// IOP Conference Series: Materials Science and Engineering. – IOP Publishing, 2020. – Т. 883. – № 1. – С. 012089.
19. Tunçay T. et al. Assessment of Inverse Distance Weighting IDW Interpolation on Spatial Variability of Selected Soil Properties in the Cukurova Plain// Journal of Agricultural Sciences. – 2016. – Т. 22. – № 3. – С. 377-384.
20. Robinson T. P., Metternicht G. Testing the performance of spatial interpolation techniques for mapping soil properties// Computers and electronics in agriculture. 2006. – Т. 50. – №. 2. – С. 97-108.
21. Emadi M., Baghernejad M. Comparison of spatial interpolation techniques for mapping soil pH and salinity in agricultural coastal areas, northern Iran// Archives of Agronomy and Soil Science. – 2014. – Т. 60. – № 9. – С. 1315-1327.
22. Laiskhanov S. U. et al. Dynamics of Soil Salinity in Irrigation Areas in South Kazakhstan// Polish Journal of Environmental Studies. – 2016. – Т. 25. – № 6. – С. 2469-2475.
23. Smanov Z. M. et al. Mapping of Cornfield Soil Salinity in Arid and Semi-Arid Regions// Journal of Ecological Engineering. – 2023. – Т. 24. – № 1. – С. 146-158.
24. Pachikin K., Erokhina O., Funakawa S. Soils of Kazakhstan, their distribution and mapping// Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. – 2014. – С. 519-533.
25. Nosin V. A., Fedorin YU. V., Friev T. A. Obshchesoyuznaya instrukciya po pochvennym obsledovaniyam i sostavleniyu krupnomasshtabnyh pochvennyh kart zemlepol'zovanij// M.: Kolos-S. – 1973. – S. 43.
26. Varennikov V.M., Gubin E.I., Kotlyarov V.N., Tazhmagambetov T.K. i dr. Instrukciya po provedeniyu krupnomasshtabnyh (1:1000 – 1:100000) geobotanicheskih izyskanij prirodnyh kormovyh ugodij Respubliki Kazahstan. – Almaty, 1995. – S. 4-5.
27. Bazilevich N. I., Pankova E. I. Opyt klassifikacii pochv po zasoleniyu// Pochvovedenie. – 1968. – № 11. – S. 3-16.
28. Pankova E. I. Ocenka zasoleniya i opyt sostavleniya krupnomasshtabnyh kart zasoleniya pochv (na primere Dzhizakskoj stepi)// Byulleten' pochvennogo Instituta im. VV Dokuchaeva. – 1972. – № 5. – S. 41-51.
29. Kornienko V. A., Korobkin V. A. K voprosu sostavleniya kart zasolennosti// Vestnik AN KazSSR. – 1976. – № 1. – S. 54-56.
30. Kan V. M. Vremennye metodicheskie ukazaniya po provedeniyu pochvenno-meliorativnyh izyskanij, sostavleniyu proektno-smetnoj dokumentacii i melioracii soloncevatyh i sodovo-zasolennyh oroshaemyh pochv Kazahskoj SSR. – 1985. – S. 85.
31. Arinushkina E. V. Rukovodstvo po himicheskomu analizu pochv. M., izd. MGU// Moskva. – 1970. – S. 489.
32. Aleksandrova L. N., Naidenova O. A. Laboratory practice in soil science// Russian.) Kolos, Leningrad. – 1976. – С. 294.
33. Lu G. Y., Wong D. W. An adaptive inverse-distance weighting spatial interpolation technique// Computers & geosciences. – 2008. – Т. 34. – № 9. – P. 1044-1055.
34. Shahbeik S. et al. Comparison between ordinary kriging (OK) and inverse distance weighted (IDW) based on estimation error. Case study: Dardevey iron ore deposit, NE Iran// Arabian Journal of Geosciences. – 2014. – Т. 7. – P. 3693-3704.
35. Mmolawa K., Or D. Root zone solute dynamics under drip irrigation: A review// Plant and soil. – 2000. – Т. 222. – № 1-2. – P. 163-190.
36. Bernstein L. Crop growth and salinity// Drainage for agriculture. – 1974. – Т. 17. – С. 39-54.
37. Zhang W. et al. Hydrochemical characteristics and irrigation suitability of surface water in the Syr Darya River, Kazakhstan// Environmental monitoring and assessment. – 2019. – Т. 191. – P. 1-17.
38. Nielsen D. R., Wierenga P. J., Biggar J. W. Spatial soil variability and mass transfers from agricultural soils //Chemical mobility and reactivity in soil systems. – 1983. – Т. 11. – С. 65-78.
39. Kovda V. A. i dr. Klassifikaciya pochv po stepeni i kachestvu zasoleniya v svyazi s soleustojchivost'yu rastenij //Botanicheskij zhurnal. – 1960. – T. 45. – № 8. – S. 1123-1131.
40. Laiskhanov S. U. et al. Dynamics of Microbiological Activity of Soils in the Natural Landscapes of the Shaulder Massif (The Mid-Stream of the Syr Darya River)// Journal of Pharmaceutical Sciences and Research. – 2018. – Т. 10. – № 7. – С. 1697-1700.
41. Stroganov B. P., Ivanickaya E. F. Vliyanie pochvennogo zasoleniya na prochnost' svyazi hlorofilla s belkami hloroplastov u hlopchatnika// Dokl. AN SSSr. – 1954. – T. 48. – S. 497-499.
42. Mamutov ZH. U. i dr. Interpretaciya dannyh vodnoj vytyazhki iz zasolennyh pochv// Almaty: Poligrafiya–Servis K. – 2011. – S. 75.
43. Poshanov M. N. et al. The Effects of the Degree of Soil Salinity and the Biopreparation on Productivity of Maize in the Shaulder Irrigated Massif// OnLine Journal of Biological Sciences. – 2022. – Т. 22. – № 1. – С. 58-67.
44. Wackernagel H., Wackernagel H. Ordinary kriging// Multivariate Geostatistics: An Introduction with Applications. – 2003. – С. 79-88.
45. Jordan M. M. et al. Spatial dynamics of soil salinity under arid and semi-arid conditions: geological and environmental implications// Environmental geology. – 2004. – Т. 45. – С. 448-456.
Review
For citations:
Smanov Zh.M., Suleimenova A.I., Poshanov M.N., Duysekov S.N., Vyrakhmanova A.S. Modern reclaim state of irrigated soils and the method of its study on the example of APC «Azia Agro Group». Soil Science and Agrichemistry. 2023;(1):15-35. (In Kazakh) https://doi.org/10.51886/1999-740X_2023_1_15