Preview

Почвоведение и агрохимия

Расширенный поиск

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ В ТОЧНОМ ЗЕМЛЕДЕЛИИ: ОБЗОР

Аннотация

Точное земледелие - новыш этап развития агросферы, связанным с использованием геоинформационных систем. В настоящие время спутниковые снимки с высоким разрешением более широко используются для изучения в сельском хозяистве, что является инновациеи для Казахстана при реализации задач точного земледелия. Тем не менее, наличие и часто непомерно высокие затраты на такие изображения предполагают альтернативныи продукт для этого конкретного приложения в точном земледелии. В частности, изображения, сделанные платформами дистанционного зондирования с малои высотои беспилотных летательных аппаратов (БПЛА), являются потенциальнои альтернативои, учитывая их низкую стоимость эксплуатации в мониторинге окружающеи среды, высоком пространственном и временном разрешении, и их высокои гибкости при захвате изображении, программировании. В мире было проведено несколько исследовании по применению изображении БПЛА для точного земледелия. Результаты этих исследовании указывают на то, что для обеспечения надежного конечного продукта для фермеров необходимы успехи в разработке платформ, производстве, стандартизации геопривязки изображении, а также в процессе обработки информации.

Об авторах

Б. У. Сулейменов
Казахский научно-исследовательский институт почвоведения и агрохимии им. У.У. Успанова
Казахстан


С. И. Танирбергенов
Казахский научно-исследовательский институт почвоведения и агрохимии им. У.У. Успанова
Казахстан


Список литературы

1. Sidorova V.A., Zhukovskii E.E., Lekomtsev P.V., Yakushev V.V. Geostatistical analysis of the soil and crop parameters in a field experiment on precision agriculture // Eurasian Soil Science. - 2012. - 8 (45). - Рр. 783-792.

2. Swain K.C., Jayasuriya H.P., Salokhe V.M. Suitability of low-altitude remote sensing images for estimating nitrogen treatment variations in rice cropping for precision agriculture adoption [Electronic resource] Journal of Applied Remote Sensing. -2007. - №1. - Mode of access: https://doi.org/10.1117/1.2824287.

3. Stafford J.V. Implementing precision agriculture in the 21st century // Journal of Agricultural Engineering Research. - 2000. - Vol. 76. - Рр. 267-275.

4. Robertson M., Carberry P., Brennan L. The economic benefits of precision agriculture: cast studies from Australia grain farms / Controlled Traffic and Precision Agriculture Conference. - 2007. - Рр. 181-187.

5. McBratney A., Whelan B., Ancev T. Future directions of precision agriculture// Precision Agriculture. - 2005. - Vol. 6. - Рр. 7-23.

6. Moran M.S., Inoue Y., Barnes E.M. Opportunities and limitation for image-based remote sensing in precision crop Management // Remote Sensing of Environment. -1997. - Vol. 61. - Рр. 319-346.

7. Cook S.E., Bramley R.G. Precision agriculture: Opportunities, benefits and pitfalls of site specific crop management in Australia // Australian Journal of Experimental Agriculture. - 1998. - Vol. 38. - P. 753-763.

8. Warren G., Metternicht G. Agricultural applications of high-resolution digital multispectral imagery: Evaluating within-field spatial variability of canola (Brassica na-pus) in Western Australia // Photogrammetric Engineering and Remote Sensing. -2005.- Vol. 71. - Рр. 595-602.

9. Zhang J.H., Wang K., Bailey J.S., Wang R.C. Predicting nitrogen status of rice using multispectral data at canopy scale // Pedosphere. - 2006. - Vol. 16. - Рр. 108-117.

10. Berni J.A., Zarco-Tejada P.J., Suarez L., Fereres E. Thermal and narrowband mul-tispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle // IEEE Transactions on Geoscience and Remote Sensing. - 2009. - Vol. 47. - Рр. 722-738.

11. Rango A., Laliberte A.S., Herrick J.E., Winters C., Havstad K., Steele C. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management [Electronic resource] Journal of Applied Remote Sensing. - 2009. - Vol. 3. -Mode of access: https://doi.org/10.1117/1.3216822

12. Hunt E.R., Cavigelli M., Daughtry C.S., McMurtrey J.E., Walthall C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status // Precision Agriculture. - 2005. - Vol. 6. - Рр. 359-378.

13. Lelong C.D., Burger P., Jubelin G., Roux B., Labbe S., Barett F. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots // Sensors. - 2008. - Vol. 8. - Рр. 3557-3585.

14. Nebiker S., Annen A., Scherrer M., Oesch D. A light-weight multispectral sensor for micro UAV: Opportunities for very high resolution airborne remote sensing//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. - 2008. - Vol. XXXVII. Part B1. - Pp. 1193-1200.

15. Hardin P.J., Hardin TJ. Small-scale remotely piloted vehicles in environmental research // Geography Compass. - 2010. - Vol. 4. - Рр. 1297-1311.

16. Xiang H., Tian L. Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform // Biosystems Engineering. - 2011. - Vol. 108. - Рр. 104-113.

17. Colewell R.N. Determining the prevalence of certain cereal crop diseases by means of aerial photography // Hilgardia. - 1956. - Vol. 26. - Рр. 223-286.

18. Monmonier M. Aerial photography at the Agricultural Adjustment Administration: Acreage controls, conservation // Photogrammetric Engineering & Remote Sensing. - 2002. - Vol. 68. - Рр. 1257-1261.

19. Malthus TJ., Maderia A.C. High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae // Remote Sensing of Environment.- 1993. - Vol. 45. - Рр. 107-116.

20. De Tar W.R., Chesson J.H., Penner J.V., Ojala J.C. Detection of soil properties with airborne hyperspectral measurements of bare fields // Transactions of the ASABE. -2008. - Vol. 51. -Рр. 463-470.

21. Gomez C., Rossel R.V., McBratney A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study// Geoderma. -2008. - Vol. 146. - Рр. 403-411.

22. Rao N.R., Garg P.K., Ghosh S.K., Dadhwal V.K. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery // Journal of Agricultural Science. - 2008. - Vol. 146. - Рр. 65-75.

23. Lan Y., Huang Y., Martin D.E., Hoffmann W.C. Development of an airborne remote sensing system for crop pest management: System integration and verification // American Society of Agricultural and Biological Engineers. - 2009. - Vol. 25. - P. 607-615.

24. Erickson B.J., Johannsen C.J., Vorst J.J., Biehl L.L. Using remote sensing to assess stand loss and defoliation in maize // Photogrammetric Engineering and Remote Sensing. - 2004. - Vol. 70. - Рр. 717-722.

25. Wu J.D., Wang D., Bauer M.E. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies // Field Crops Research. - 2007. - Vol. 102. - Рр. 33-42.

26. Gutierrez P.A., Lopez-Granados F., Jurado-Exposito J.M., Hervas-Martinez C. Logistic regression product-unit neural networks for mapping Ridolfia segetum infestations in sunflower crop using multitemporal remote sensed data // Computers and Electronics in Agriculture. - 2008. - Vol. 64. - Рр. 293-306.

27. Seelan S.K., Laguette S., Casady G.M., Seielstad G.A. Remote sensing applications for precision agriculture: A learning community approach // Remote Sensing of Environment. -2003. - Vol. 88. - Рр. 157-169.

28. Zhao D.H., Huang L.M., Li J.L., Qi J.G. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy// ISPRS Journal of Photogrammetry and Remote Sensing. - 2007. - Vol. 62. - Рр. 25-33.

29. Godwin R.J., Richards T.E., Wood G.A., Welsh J.P., Knight S.M. An economic analysis of the potential for precision farming in UK cereal production//Biosystems Engineering. - 2003. - Vol. 84. - Рр. 533-545.

30. Du Q., Chang N.B., Yang C.H., Srilakshmi K.R. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management// Journal of Environmental Management. - 2008. - Vol. 86. - Рр. 14-26.

31. Gomez-Casero M.T., Castillejo-Gonzalez I.L., Garcia-Ferrer A., Pena-Barragan J.M., Jurado-Exposito M., Garcia-Torres L. Spectral discrimination of wild oat and canary grass in wheat fields for less herbicide application // Agronomy for Sustainable Development. - 2010. - Vol. 30. - Рр. 689-699.

32. McNairn H., Brisco B. The application of C-band polarimetric SAR for agriculture: A review // Canadian Journal of Remote Sensing. - 2004. - Vol. 30. - Рр. 525-542.

33. Sullivan D.G., Shaw J.N., Rickman D. IKONOS imagery to estimate surface soil property variability in two Alabama physiographies//Soil Science Society of America Journal. -2005. - Vol. 69. - Рр. 1789-1798.

34. Zarco-Tejada P.J., Gonzalez-Dugo V., Berni J.A. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera // Remote Sensing of Environment.- 2012. - Vol. 117. -Рр. 322-337.

35. Laliberte A.S., Rango A., Fredrickson E.L. Multi-scale, object-oriented analysis of QuickBird imagery for determining percent cover in arid land vegetation. In: 20th Biennial Workshop on Aerial Photography, Videography, and High Resolution Digital Imagery for Resource Assessment [Electronic resource]. - Weslaco, TX, 2012. - Mode of access: https://jornada.nmsu.edu/bibliography/05-055Proc.pdf.

36. Beeri O., Phillips R., Carson P., Liebig M. Alternate satellite models for estimation of sugar beet residue nitrogen credit // Agriculture, Ecosystems & Environment. -2005. - Vol. 107. - Рр. 21-35.

37. Bausch W.C., Khosla R. QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize // Precision Agriculture. - 2010.- Vol. 11. - Рр. 274-290.

38. Donoghue D., Watt P., Cox N., Wilson J. Remote sensing ofspecies mixtures in coniferplantations using LiDAR height and intensity data. International Workshop 3Dremote sensing in Forestry [Electronic resource]. - 2012. - Mode of access: http://www.rali.boku.ac.at/fileadmin/_/H857-VFL/workshops/3drsforestry/presentations/6a.5-donoghue.pdf.

39. Castillejo-Gonzalez I.L., Lopez-Granados F., Garcia-Ferrer A., Pena-Barragan J.M., Jurado-Exposito M., Orden M.S. Object- and pixel-based analysis for mapping crops and their agro- environmental associated measures using QuickBird imagery // Computers and Electronics in Agriculture. - 2009. - Vol. 68. - Рр. 207-215.

40. Haboudane D., Miller J.R., Pattey E., Zarco-Tejada P.J., Strachan I.B. Hyperspec-tral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture // Remote Sensing of Environment. - 2004. - Vol. 90. - Рр. 337-352.

41. Tenkorang F., DeBoer L. On-farm profitability of remote sensing in agriculture// Journal of Terrestrial Observation. - 2007. - Vol. 1. - Рр. 50-59.

42. Whipker L.D., Akridge J.T. Precision agricultural services dealership survey results [Electronic resource]. - 2012. - Mode of access: http://www.agecon.purdue.edu/ cab/research_articles/articles/2009_crop_life_precision_report.pdf.

43. Robert P.C. Use of remote sensing imagery for precision farming/In: Proceedings of 26th International Symposium on Remote Sensing of Environment and 18th symposium of the Canadian Remote Sensing Society, Ontario, Canada. - 1996. - Pp. 596599.

44. Murakami E., Saraiva A.M., Ribeiro L.C., Cugnasca C.E., Hirakawa A.R., Correa P. L. An infrastructure for the development of distributed service-oriented information systems for precision agriculture // Computers and Electronics in Agriculture. - 2007. -Vol. 58. - Рр. 37-48.

45. Griffin T.W., Lowenberg-Deboer J., Lambert D.M., Peone J., Payne T, Daberkow S. G. Adoption, profitability, and making better use of precision farming data [Electronic resource] / Staff paper.- West Lafayette, IN, USA: Department of Agricultural Economics, Purdue University, 2004. - No. 04-06. - Mode of access: http://ageconsearch.umn.edu/ record/28615.

46. Lamb D.W., Frazier P., Adams P. Improving pathways to adoption: Putting the right P's in precision agriculture // Computers and Electronics in Agriculture. - 2008. -Vol. 61. - Рр. 4-9.

47. Swain K.C., Thomson S.J., Jayasuriya H.P. Adoption of an unmanned helicopter for low- altitude remote sensing to estimate yield and total biomass of a rice crop// American Society of Agricultural and Biological Engineers. -2010. - Vol. 53. - Рр. 21-27.

48. Laliberte A.S., Rango A. Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands // GIScience & Remote Sensing. - 2011. - Vol. 48. - Рр. 4-23.

49. Eisenbeiss H. A mini unmanned aerial vehicle (UAV): system over and image acquisition. In: A. Gruen, Sh. Murai, T. Fuse,F. Remondino (Eds.) [Electronic resource] / Proceedings of International Workshop on Processing and Visualization Using High-Resolution Imagery, XXXVI(5/W1), Pitsanulok, Thailand. - 2012. - Mode of access: http://www.isprs.org/proceedings/XXXVI/5-W1/papers/11.pdf.

50. Hunt E.R., Daughtry C.S., Walthall C.L., McMurtrey J.E., Dulaney W.P. Agricultural remote sensing using radio-controlled aircraft. In: T. VanToai, D. Major, M. McDonald, J. Schepers & L. Tarpley (Eds.). Digital image and spectral techniques: Applications to precision agriculture and crop physiology // American Society of Agronomy - 2003. - Vol. 66. - Pp. 197-205.

51. Johnson L.F., Herwitz S.R., Lobitz B.M., Dunagan S.E. Feasibility of monitoring coffee field ripeness with airborne multispectral imagery // Applied Engineering in Agriculture. -2004. - Vol. 20. - Pp. 845-849.

52. Laliberte A.S., Herrick J.E., Rango A. Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring // Photogrammetric Engineering and Remote Sensing. - 2010. - Vol. 76. - Pp. 661672.

53. Kendoul F., Lara D., Fantoni-Coichot I., Lozano R. Real-time nonlinear embedded control for an autonomous quadrotor helicopter // Journal of Guidance Control and Dynamics. -2007. - Vol. 30. - Pp. 1049-1061.

54. Primicerio J., Gennaro S.D., Fiorillo E., Genesio L., Lugato E., Matese A., et al. A flexible unmanned aerial vehicle for precision agriculture // Precision Agriculture. -2012. - Vol. 13. -Рр. 517-523.

55. Aber J.S., Marzolff I., Ries J.B. Small-format aerial photography // Boston: Elsevier, 2010. - 266 p.

56. Lewis G. Evaluating the use of a low-cost unmanned aerial vehicle platform in acquiring digital imagery for emergency response. In J. Li, S. Zlatanova, & A. Fabbri (Eds.), Geomatics solutions for disaster management. - Berlin: Springer, 2007. - Pp. 117133.

57. Hunt E.R., Hively W.D., Fujikawa S.J., Linden D.S., Daughtry C.S.T., McCarty G. W. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring // Remote Sensing. - 2010. - Vol. 2. - Рр. 290-305.

58. Gomez-Candon D., Lopez-Granados F., Caballero-Novella J.J., Gomez-Casero M.T., Jurado-Exposito M., Garcia-Torres L. Geo-referencing remote images for precision agriculture using arti-ficial terrestrial targets // Precision Agriculture. - 2011. - Vol. 12. -Рр. 876-891.

59. Quilter M.C., Anderson V.J. A proposed method for determining shrub utilization using (LA/ LS) imagery // Journal of Range Management. - 2001. - Vol. 54. - Рр. 378-381.

60. Hardin P., Jackson M. An unmanned aerial vehicle for rangeland photography // Rangeland Ecology & Management. - 2005. - Vol. 58. - Рр. 439-442.

61. Hinkleya E.A., Zajkowski T. USDA forest service-NASA: Unmanned aerial systems demon- strations-pushing the leading edge in fire mapping // Geocarto International. - 2011.- Vol. 26. - Рр. 103-111.

62. Laliberte A.S., Rango A. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery // IEEE Transactions on Geoscience and Remote Sensing, Special Issue on UAV Sensing Systems in Earth Observation. - 2009. - Vol. 47. - Рр. 761-770.

63. Hardin P.J., Jackson M.W., Anderson V.J., Johnson R. Detecting squarrose knapweed (Centaurea virgata Lam. Ssp. Squarrosa Gugl.) using a remotely piloted vehicle: A Utah case study // GIScience & Remote Sensing. - 2007. - Vol. 44. - Рр. 203-219.

64. Fisher P.D., Abuzar M., Rab M.A., Best F., Chandra S. Advances in precision agriculture in south-eastern Australia. I. A regression methodology to simulate spatial variation in cereal yields using farmers' historical paddock yields and normalised difference vegetation index // Crop & Pasture Science. - 2009 .- Vol. 60. - Рр. 844-858.

65. Silva C.B., Vale S.R., Pinto F.C., Muller C.S., Moura A.D. The economic feasibility of precision agriculture in Mato Grosso do Sul State, Brazil: A case study // Precision Agriculture. - 2007. - Vol. 8. - Рр. 255-265.

66. Adrian A.M., Norwood S.H., Mask P.L. Producers' perceptions and attitudes toward precision agriculture technologies // Computer and Electronics in Agriculture. -2005. - Vol. 48. - Рр. 256-271.

67. Torbett J.C., Roberts R.K., Larson J.A., English B.C. Perceived improvements in nitrogen fertilizer efficiency from cotton precision farming // Computers and Electronics in Agriculture. - 2008. - Vol. 64. - Рр. 140-148.

68. Rango A., Laliberte A.S. Impact of flight regulations on effective use of unmanned aerial vehicles for natural resources applications [Electronic resource] Journal of Applied Remote Sensing. - 2010. - Vol. 4. - Mode of access: https:// doi.org/10.1117/1.3474649.

69. Flowers M., Weisz R., White J.G. Yield-based management zones and grid sampling strategies: Describing soil test and nutrient variability // Agronomy Journal. -2005. - Vol. 97. -Р р. 968-982.

70. McBratney A.B., Whelan B.M., Shatar T. Variability and uncertainty in spatial, temporal and spatio-temporal crop yield and related data // In: Precision agriculture: Spatial and temporal variability of environmental quality. Chichester: Wiley - 1997. -Pp. 141-160.

71. Long D.S., Carlson G.R., DeGloria S.D. Quality of field management maps. In P. C. Robert (Ed.), Proceedings of Site-Specific Management for Agriculture Systems Madison: American Society of Agronomy - 1995. - Pp. 251-271.

72. Diker K., Heermann D.F., Bordahl M.K. Frequency analysis of yield for delineating yield response zones // Precision Agriculture. - 2004. - Vol. 5. - Рр. 435-444.

73. Yang C., Bradford J.M., Wiegand C.L. Airborne multispectral imagery for mapping variable growing conditions and yields of cotton, grain sorghum, and corn. American Society of Agricultural and Biological Engineers. - 2001. - Vol. 44. - Рр. 1983-1994.

74. Beeri O., Peled A. Geographical model for precise agriculture monitoring with real-time remote sensing // Journal of Photogrammetry and Remote Sensing. - 2009. -Vol. 64. - Рр. 47-54.


Рецензия

Для цитирования:


Сулейменов Б.У., Танирбергенов С.И. ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ В ТОЧНОМ ЗЕМЛЕДЕЛИИ: ОБЗОР. Почвоведение и агрохимия. 2018;(2):85-100.

For citation:


Suleymenov B.U., Tanirbergenov S.I. PERSPECTIVES OF APPLICATION OF UNMANNED AERIAL VEHICLE IN THE PRECISION FARMING: REVIEW. Soil Science and Agrichemistry. 2018;(2):85-100. (In Russ.)

Просмотров: 110


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1999-740X (Print)
ISSN 2959-3433 (Online)