плодородие почв

УДК 626.84

Исмагилова Х.Р. ТЕХНОЛОГИЯ МЕЛКОДИСПЕРСНОГО (АЭРОЗОЛЬНОГО) ОРОШЕНИЯ В УСЛОВИЯХ АПШЕРОНА АЗЕРБАЙДЖАНА

Научно-Производственное Объединение Гидротехники и Мелиорации Азербайджана, г. Баку, ул. И.Дадашева, 70 А, Азербайджан, e-mail: meliorasiya58@mail.ru

Аннотация. В статье изложены результаты трехлетних исследований (2013-2015 гг.) по технологии мелкодисперсного орошения люцерны в условиях Апшерона. В этом аспекте исследования были проведены в трех вариантах: І вариант − орошение люцерны с дождеванием (контроль); ІІ вариант − орошение люцерны мелкодисперсным увлажнением в сочетании с дождеванием; ІІІ вариант − орошение люцерны мелкодисперсным увлажнением. В процессе исследования выявлено, что при применении орошения мелкодисперсным увлажнением в сочетании с дождеванием улучшается фитоклимат растений люцерны, в жаркие солнечные дни снижается температура воздуха на 10 °C и повышается относительная влажность воздуха на 30-40 %. В конечном итоге, устраняется депрессия фотосинтеза и за счет этого на орошение затрачивается по сравнению с контрольным вариантом (І вариант), во ІІ-ом варианте в 1,25, а в ІІІ варианте в 1,85 раза меньше оросительной воды. Соответственно, по вариантам опыта урожайность при ІІ варианте увеличивается в 1,4 раза, а при ІІІ варианте наоборот уменьшается в 0,93 раза, т.е. на 7,3 %.

Ключевые слова: аэрозольное орошение, мелкодисперсное увлажнение, дождевание, поливные нормы, режимы орошения, люцерна, урожайность.

ВВЕДЕНИЕ

Первые опыты по мелкодисперсному увлажнению были начаты в 1935 году инженером И.И. Заикиным (ВНИИГиМ), а изучение агрономических его основ проф. А.Д. Александровым в сельскохозяйственной академии им. К.А. Тимирязева, в 1970 году [1].

В настоящее время мелкодисперсному увлажнению уделяется большое внимание. При этом способе орошения сельскохозяйственных культур значительно снижается норма полива, поскольку отсутствует поверхностный сток и глубинная фильтрация, сохраняются структура и физические свойства почвы, создаются благоприятные условия для жизнедеятельности растений [1, 2].

Мелкодисперсным способом увлажняют, в основном, приземный слой воздуха. Его можно использовать для устранения депрессии фотосинтеза, снижения расхода воды на эвакотранспирацию. Высокая температура и

сухой воздух окружающей среды вызывают депрессию фотосинтеза растений. При таких условиях, когда к растениям поступает влаги на 20 % меньше объема испаряемого листьями, в них полностью нарушается белково-углеводный обмен. В таких условиях растения даже при достаточной влагозарядке почвы, гибнут в результате чрезмерного испарения влаги с поверхности растений вследствие недостаточно быстрого передвижения влаги по сосудам растений. Для устранения этого неблагоприятного фактора требуется повышение влажности и понижение температуры приземного слоя воздуха окружающего растения [3, 4].

При применении мелкодисперсного увлажнения мельчайшие капли воды, полученные с помощью мелкодисперсных установок, увлажняют приземный слой воздуха, наземную часть растений и частично поверхность почвы. При этом, в результате испарения

мелко диспергированной воды происходит охлаждение растений, а увлажненный воздух, имеющий повышенную плотность, образует ограждающий слой между растениями и верхними слоями сухого воздуха.

Как известно для роста и плодоношения растения используют ничтожно малую часть (от 3 до 0,2 %) воды, поступающей через корневую систему в листья. Основная масса (более 95 %) идет на испарение – транспирацию [5].

Таким образом, более 95 % транспирируемой воды не участвует в биохимических превращениях, а служит растениям для защиты от повышенной температуры и пониженной влажности окружающего воздуха. Регулирование транспирационной способности растений возможно только за счет уменьшения водного потенциала на границе лист-атмосфера. Это можно осуществить, увеличивая влажность воздуха, снижая температуру воздуха, т.е. регулируя фитоклимат. Количество воды необходимое для изменения указанных параметров в несколько раз меньше обычной оросительной нормы, компенсирующей водопотребление растений увлажнением почвы [6, 7].

ОБЪЕКТЫ И МЕТОДЫ

Опыты были заложены на поле люцерны, площадью 0,20 га опытноисследовательской станции механизации орошения Апшерона НПО «Азии».

Опытный участок расположен на Апшеронском полуострове. Почвенно-климатические условия Апшеронского полуострова формируются под влиянием Каспийского моря, окружающего его с трех сторон и гор Большого Кавказа. Почвы региона состоят, в основном, из серо-каштановых почв, с локальной встречаемостью засоленных и солонцеватых почв, а также из песчаников. Серо-бурые почвы по своему строению, физико-химическим свойствам и биологической активности резко отличаются от других почв республики. Эти почвы

имеют слабую структуру, и по механическому составу относятся к супесям. На большинстве участков плодородный слой почвы незначителен и состоит из исходящих друг в друга слоев песка и глины. Следует отметить, что в результате длительного внесения в почву органических и минеральных удобрений, а также интенсивного земледелия плодородный слой почвы был утолщен, а физико-химические свойства и структура - значительно улучшены. Апшеронский полуостров, относящийся к сухим субтропикам характеризуется жарким летом и теплой зимой. Среднегодовая скорость ветра составляет 7,2 м/сек, а в отдельные дни увеличивается до 30-40 м/сек. Среднегодовая температура воздуха составляет 14,0°С, в жаркие дни - 42,0°C. Количество солнечных дней доходит до 230.

Регион обладает большим тепловым энергетическим потенциалом, что продлевает период нормального развития растений с марта по октябрь. Количество среднегодовых осадков составляет 144-218 мм. Распределяются осадки по сезонам неравномерно. Максимальное количество осадков приходится на весенний и осенний периоды. Годовая испаряемость с поверхности земли составляет 1119 мм, что превышает количество годовых осадков в 5,13-7,80 раз. Поэтому земледелие в регионе основано на интенсивном орошении. Количество дней без заморозков составляет 278 дней. Сумма годовых температур, превышающих 10°С, составляет 4192°С, а менее 100С – всего 23000С. Развитие и созревание урожая основных сельскохозяйственных культур приходится на период с температурой, превышающей 10°С. Зимняя температура на поверхности почвы составляет 5°C, а летом этот показатель повышается до 29,70 С.

В Апшеронском полуострове выращивание сельскохозяйственных культур проводится на орошение.

Исследования были проведены в трех вариантах:

- I вариант орошение люцерны с дождеванием (контроль)
- II вариант орошение люцерны мелкодисперсным увлажнением с дождеванием
- III вариант орошение люцерны мелкодисперсным увлажнением.

Каждый вариант опыта выполнялся в трехкратной повторности. Повторные делянки каждого варианта опыта были расположены методом рендомезирования (рисунок 1).

При дождевании орошение проводилось при снижении фактической влажности почвы до значения 75 % от НВ почв, а при орошении мелкодисперсным увлажнением при повышении температуры воздуха до 28°C. Предельная температура воздуха (280С) была установлена по методу Молиша. Этот метод выполняется следующим образом: на нижнюю поверхность листа при определенных температурах воздуха с помощью пипетки наносили спирт, затем бензол и наконец, ксилол. Если спирт проникает в ткань листа, то это говорит о том, что устьица раскрыты широко, если спирт не проникает, а проникает бензол, то это говорит о том, что устичные отверстия сужены. Если же в отличие от бензола и спирта проникает только ксилол, то это означает, что устьица почти закрыты, наконец, при совершенно закрытых устьицах никакая жидкость не диффундирует в ткань листа. Таким образом, опытным путем определяется верхний порог температуры воздуха, при котором растения не способны фотосинтезировать. По этой методике в Апшероне верхний порог температуры воздуха для фотосинтеза культуры люцерны был установлен нами в 28°C, т.е. мелкодисперсное увлажнение осуществлялось при повышении температуры воздуха более 280С [1, 8].

Расчетный слой почвы был принят при дождевании 1,0 м.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для проведения сравнительных анализов между вариантами опыта, были обобщены результаты трехлетних исследований по поливным и оросительным нормам. Результаты приведены в таблице 1.

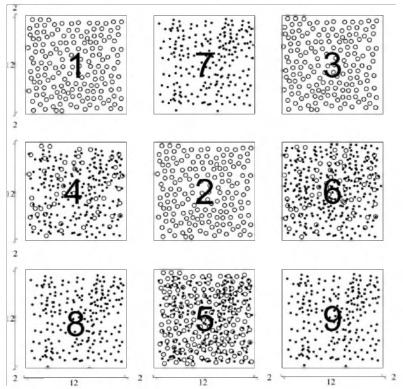
Орошение способом дождевания является I вариантом опыта (контрольный вариант), при котором люцерновое поле в 2013 году поливалось 8 раз, а оросительная норма составила 3782 м3/га. Соответственно в 2014 году люцерна поливалась 9 раз с оросительной нормой $6690 \text{ м}^3/\text{га}$, а в 2015году поливалась также 9 раз с оросительной нормой 6099 м³/га. Средняя трехлетняя оросительная норма составила 6190 м³/га, соответственно поливные нормы составили 722,72, 743,3 и 677,76 м³/га, а трехлетняя средняя поливная норма составила 714,6 м³/га.

Во II варианте опытов, предусматривающем мелкодисперсное увлажнение в сочетании с дождеванием, люцерна в 2013 году поливалась 73 раза, в 2014 году 73 раза, а в 2015 году 83 раза. При этом поливная норма 2013 году составила 32,5 м3/га, в 2014 году - $34 \text{ м}^3/\text{га}$, а в $2015 \text{ году} - 29,1 \text{ м}^3/\text{га}$ при среднем показателе 31,9 м³/га. Соответственно оросительные нормы составили 2369, 2481, 2706 м3/га при среднем показателе 2519 м3/га. В этом же варианте поливы дождеванием проводили в 2013 году 3 раза, в 2014 году - 4 а в 2015 году - 3 раза (вегетационные поливы). Поливные нормы по годам исследования соответственно составили 755,3, 745 м3/га, а средняя трехлетняя норма полива равнялась 737,4 м3/га. В этом контексте оросительные нормы составили 2266, 2848 и 2235 м3/га, а средняя трехлетняя оросительная норма составила 2450 м3/га.

Во II варианте при сочетании дисперсионного способа с дождеванием по каждому из двух способов орошения поливные нормы составили всего 4969 м³/га (таблица 1). При поливе мелкодисперсным способом увлажнения по III варианту (основной вариант) поливы производились в 2013 году 77,

в 2014 году 79, в 2015 году 86 раз. Соответственно средние поливные нормы составили 33, 24,65, 29,1 м 3 /га. Вегетационные поливные нормы составили в 2013 году 2538 м 3 /га, в 20414 году – 2737 м 3 /га, в 2015 году – 2504 м 3 /га. Средний показатель составил 2593 м 3 /га. Известно, что, так же, как и

Таблица 1 - Поливные и оросительные нормы по вариантам опытов и их сравнительный анализ (2013-2015 гг.)


Способы орошения	Вариан- ты опы- тов	Годы проведе- ния опытов	Коли- чество поли- вов	Средние полив- ные нормы м³/га	Ороси- тельные нормы м³/га	Экономия оросительной воды по сравнению с дождеванием	
						м³/га	%
1. Орошение дождеванием (контрольный вариант)	I	2013 2014 2015 средний	8 9 9	722,75 743,30 677,76 714,60	5782 6690 6099 6190		
2. Орошение мелкодисперсным увлажнением в сочетании с дождеванием а) орошение мелкодисперсным увлажнением б) орошение дождеванием	II	2013 2014 2015 средний 2013 2014 2015 средний	73 73 83 - 3 4 3	32,5 34,0 32,6 33,0 755,3 712,0 745,0 737,4	2369 2481 2706 2519 2266 2848 2235 2450		
Средний пока- затель по двум способам поли- ва					4969	12,21	19,7
3. Орошение мелкодисперсным увлажнением а) дождевание	III	2013 2014 2015 средний 2013 2014 2015 средний	77 79 86 - 1 1	33,0 24,65 32,10 - 668,0 657,0 672,0 665,2	2538 2737,5 2795 2690 668 657 672 665		
Средний пока- затель по двум способам поли- ва					3355	2835	45,8

в I и II вариантах опытов, в III варианте ранней весной были проведены однократные дождевания. С этой точки зрения поливные нормы составили в 2013 году – 338 м³/га, в 2014 году – 657 м³/га, а в 2015 году – 672 м³/га, а средняя трехлетняя норма полива составила 665 м³/га. С учетом вышесказанного, в III варианте при поливе двумя способами средняя оросительная норма равнялась 3355 м³/га (таблица 1).

С точки зрения экономии поливной воды по вариантам опытов видно, что, по сравнению с I вариантом, предусматривающим дождевание как кон-

трольный вариант, во II варианте – мелкодисперсное увлажнение в сочетании с дождеванием было сэкономлено за вегетационный период на каждый гектар люцерновых посевов 1227 м³ воды, что составляет 19,7 %.

В III варианте опытов, предусматривающим только мелкодисперсное увлажнение, по сравнению с контрольным вариантом на каждый гектар люцерновых посевов за период вегетации было сэкономлено 2931 м³ поливной воды, что составляет примерно 45,8 % (таблица 1).

I вариант - орошение способом дождевание 1,2,3 повторные делянки I варианта

II вариант - мелкодисперсное увлажнением в сочетании дождеванием 4,5,6 повторные делянки II варианта

III вариант - мелкодисперсное увлажнением 7,8,9 повторные делянки III варианта

Рисунок 1 – Схема опытного участка

В заключение следует отметить, что по экономии оросительной воды III вариант опыта оказался самым эффективным.

В результате проведения полевых опытов в люцерновых посевах была определена урожайность люцерны по вариантам опытов. Урожайность по отдельным вариантам определялась в трех проворностях. Полученные результаты представлены в таблице 2. В І варианте при орошении дождеванием (контрольный вариант) урожайность

люцерны составила в 2013 году – 206 ц/га, в 2014 году – 185,6 ц/га, в 2015 году – 171,9 ц/га. Соответственно во ІІ варианте при мелкодисперсном увлажнении с дождеванием урожайность составила в 2013 году – 290 ц/га, в 2014 году – 260,5 ц/га, в 2015 году – 237,3 ц/га.

В III варианте при поливе только мелкодисперсным увлажнением урожайность составила в 2013 году – 190 ц/га, в 2014 году – 272,5 ц/га, в 2015 году –159,9 ц/га (таблица 2).

Таблица 2 - Урожайность люцерны по вариантам опытов

Варианты опыта	Годы прове- дения иссле- дований	Урожайность	Повышение урожайности люцерны во II и III вариан- тах опыта по сравнению с дождеванием (I контрольный вариант)		
			ц/га	%	
I	2013	206,0	-	-	
I вариант	2014	185,6	14	-	
Дождевание (контрольный вариант)	2015	171,4	10-	. 8	
(контрольный вариант)	средний	187,8	-	-	
II вариант	2013	290,0	84	40,9	
Мелкодисперсное увлаж-	2014	260,5	74,9	40,4	
нение в сочетании с дож-	2015	237,3	65,4	38,0	
деванием	средний	262,6	74,8	39,80	
	2013	190,0	-16	-7,8	
III вариант Мелкодис-	2014	172,5	-13,1	-7,10	
персное увлажнение	2015	159,9	-12,0	-7,09	
	средний	171,1	-13,7	-7,2	

Средняя урожайность по вариансоставила: ПО варианту там I (контрольный вариант) 187,8 ц/га, по II варианту (мелкодисперсное увлажнение в сочетании с дождеванием) -262,8 ц/га, по III варианту (мелкодисперсное увлажнение) - 174,1 ц/га. На основании полученных результатов следует отметить, что по сравнению с І (контрольным) вариантом опыта во II варианте с применением мелкодисперсного увлажнения в сочетании с дождеванием повышение урожайности за 3 года варьировала в пределах 65,484 ц/га. Трехлетний средний показатель повышения урожайности был равен 74,8 ц/га. В процентах прирост урожая варьировал в пределах 38-40,9 %. Трехлетний средний прирост урожая во II варианте по сравнению с I вариантом (контрольный) составил 39,8 %. В III варианте опытов при мелкодисперсном увлажнении ПО сравнению (контрольным) вариантом опыта урожайность наоборот уменьшилась. Так, если в контрольном варианте урожайность в 2013 году составила 206,0 ц/га, то в III варианте при мелкодисперсном

увлажнении показатель урожайности составил 190 ц/га. Точно так же в 2014 году в I варианте – 185,6 ц/га, в III варианте 172,5 ц/га, в 2015 году в том же порядке в I варианте урожайность составила 171,9 ц/га, а в III варианте – 159,9 ц/га. В среднем, трехлетняя средняя урожайность в III варианте (полив мелкодисперсным увлажнением) по сравнению с I вариантом (контрольным) с дождеванием было получено урожая меньше на 13,7 ц/га или 7,3 %.

В итоге следует отметить, что в условиях Апшерона вегетационный период бывает сухим и жарким, поэтому применение только мелкодисперсного увлажнения не способно удовлетворить водопотребность люцерны и поэтому урожай снижается на 13,7 % (таблица 2).

В результате экономических расчетов, проведенных на основании данных полученных опытным путем выявлено, что стоимость урожая в I варианте (контрольный вариант) составила 1408.5 вариантеман/га, во II 1969.5 ман/га, В III варианте 1305,75 ман/га. Соответственно дополнительные капитальные вложения составили 375, 391 и 367 ман/га. В том числе сельскохозяйственные расходы составили 298, 300 и 297 ман/га. Себестоимость 1 центнера урожая составила

в I варианте - 1,59 ман/га, II варианте-1,14 ман/га и 1,70 ман/га. Количество воды, затраченной на производство варианте составило урожая В I (контроль) 32,96 м3/ц, во II варианте-18,92 м³/ц, а в III варианте - 19,27 м³/ц, что касается экономической эффективности, то видно, что во II варианте она составила 436,5 ман/га, в то время как в III варианте этот показатель составил 3719 ман/га. В результате следует отметить по всем экономическим показателя дисперсионный способ орошения люцерны в сочетании с дождеванием в условиях Апшерона превосходит дисперсионный способ орошения (III вариант).

ЗАКЛЮЧЕНИЕ

Мелкодисперсное увлажнение в сочетании с дождеванием (II вариант опыта) по урожайности и экономической эффективности превосходит I и II варианты опыта, только по экономии оросительной воды отстает от III варианта опыта, занимает 2-ое место. Учитывая это, в условиях Апшерона при люцерны рекомендуется орошении применять мелкодисперсное увлажнение в сочетании с дождеванием. Только в исключительных случаях в засушливые годы можно применять мелкодисперсное увлажнение.

СПИСОК ЛИТЕРАТУРЫ

- 1 Баширов Н.Б., Ахмедов Ф.А. Аэрозольное орошение сельскохозяйственных культур на крутых склонах. Обзорная информация // Серия сельское хозяйство. Баку: АзНИИНТИ, 1990. 29 с.
- 2 Александров А.Д. и др. Мелкодисперсное увлажнение сельскохозяйственных культур // Сборник статей советских специалистов на IX Международном конгрессе по ирригации и дренажу. М.: ЦБНТИ Минводхоза СССР, 1975. –С. 58-78.
- 3 Заикин А.Н., Заикина. А.К. К вопросу развития мелкодисперсного дождевания /современные оросительные системы и пути их совершенствования // Сборник научных трудов ВНИИГиМа. Вып. 2. М., 1978. С. 67-76.
- 4 Рассолов Б.К., Коршков В.В. Технология и технические средства аэрозольного увлажнения сельскохозяйственных культур // Международный сельскохозяйственный журнал. 1980. №9. С. 96-99.
- 5 Степанов В.Н., Киселев А.Н., Третьяков Н.Н. Основы агрономии. М.: Колос, 1977. 350 с.

- 6 Бурдюгов В.Г., Зинковский В.Н. Эффективность мелкодисперсного дождевания полевых культур (рациональное использование и охрана водных ресурсов). Новочерскасск, АзНИИГиМ, 1980. С. 79-83.
- 7 Багров М.Н., Жаринова И.И. Роль искусственного микроклимата и формирование урожая // Гидротехника и мелиорация. 1984. № 4. С. 66-67.
 - 8 Доспехов Б.Ф. Методика полевого опыта. М.: Колос, 1979. 416 с.

REFERENCES

- 1 Bashirov N.B., Akhmedov F.A. Aerozolnoye orosheniye selskokhozyaystvennykh kul-tur na krutykh sklonakh. Obzornaya informatsiya // Seriya selskoye khozyaystvo. Baku: Az-NIINTI, 1990. 29 s.
- 2 Aleksandrov A.D. i dr. Melkodispersnoye uvlazhneniye selskokhozyaystvennykh kultur // Sbornik statey sovetskikh spetsialistov na IX Mezhdunarodnom kongresse po irrigatsii i drenazhu. M.: TsBNTI Minvodkhoza SSSR, 1975. –S. 58-78.
- 3 Zaikin A.N., Zaikina. A.K. K voprosu razvitiya melkodispersnogo dozhdevaniya / sovremennye orositelnye sistemy i puti ikh sovershenstvovaniya // Sbornik nauch-nykh trudov VNIIGiMa. Vyp. 2. M., 1978. S. 67-76.
- 4 Rassolov B.K., Korshkov V.V. Tekhnologiya i tekhnicheskiye sredstva aerozolnogo uvlazhneniya selskokhozyaystvennykh kultur // Mezhdunarodny selskokhozyaystvenny zhurnal. 1980. $N^{o}9$. S. 96-99.
- 5 Stepanov V.N., Kiselev A.N., Tretyakov N.N. Osnovy agronomii. M.: Kolos, 1977. 350 s.
- 6 Burdyugov V.G., Zinkovsky V.N. Effektivnost melkodispersnogo dozhdevaniya polevykh kultur (ratsionalnoye ispolzovaniye i okhrana vodnykh resursov). Novocherskassk, AzNIIGiM, 1980. S. 79-83.
- 7 Bagrov M.N., Zharinova I.I. Rol iskusstvennogo mikroklimata i formirovaniye urozhaya // Gidrotekhnika i melioratsiya. − 1984. − № 4. − S. 66-67.
 - 8 Dospekhov B.F. Metodika polevogo opyta. M.: Kolos, 1979. 416 s.

ТҮЙІН

Исмагилова Х.Р.

ТЕХНОЛОГИЯ МЕЛКОДИСПЕРСНОГО (АЭРОЗОЛЬНОГО) ОРОШЕНИЯ В УСЛОВИЯХ АПШЕРОНА АЗЕРБАЙДЖАНА

Әзірбайжан Гидротехника және Мелиорация Ғылыми-Өндірістік ұйымы, Баку қаласы, И.Дадашев көшесі, 70 А, Әзірбайжан,

e-mail: meliorasiya58@mail.ru

Мақалада Апшерон жағдайында жоңышқаны ұсақдисперсті суару технологиясы бойынша үш жылдық зерттеулер (2013-2015 жылдар) нәтижесі берілген. Осыған байланысты зерттеулер үш нұсқада жүргізілді: І нұсқа – жоңышқаны жаңбырлатып суару (бақылау); ІІ нұсқа – жаңбырлатып суаружен ұштастыра отырып, жоңышқаны ұсақдисперсті ылғалдандырып суару; ІІІ нұсқа – жоңышқаны ұсақдисперсті ылғалдандырып суару. Зерттеу нәтижесінде жаңбырлатып суарумен ұштастыра отырып, ұсақдисперсті ылғалдандырып суаруды қолданғанда жоңышқа өсімдігінің фитоклиматы жақсарды, ыстық, шуақты күндерде ауа температурасы 10°С төмендейді және ауаның салыстырмалы ылғалдылығы 30-40 % артатыны анықталды. Бұдан шығатын нәтиже, бұл кезде фотосинтез депрессиясы жойылады және соның арқасында суаруға бақылау нұсқасымен салыстырғанда (І нұсқа), ІІ - ші нұсқада 1,25 және ІІІ -нұсқада 1,85 есе аз су жұмсалады. Сәйкесінше, тәжірибе нұсқалары бойынша өнімділік ІІ - ші нұсқада 1,4 есеге артады, ал ІІІ – нұсқада керісінше 0,93 есе, яғни 7,3 % -ке төмендейді.

Түйінді сөздер: аэрозольді суару, ұсақдисперсті ылғалдандыру, жаңбырлату, суару мөлшерлері, суару режимдері, жоңышқа, өнімділік.

SUMMARY Ismagilova H.R.

TECHNOLOGY FINE (SPRAY) IRRIGATION IN CONDITIONS OF AZERBAIJAN APSHERON Public corporation for land reclamation and water resources of Azerbaijan, Baku, 70A Dadashev st., Azerbaijan, e-mail: meliorasiya58@mail.ru

The article presents the results of three years of research (2013-2015) for fine alfalfa irrigation technology in Apsheron. In this respect, studies have been conducted in the three messages: I variant - alfalfa irrigation with irrigation (control); II variant - irrigation of alfalfa particulate moisture combined with irrigation; III variant - irrigation of alfalfa particulate moisture. The study revealed that the application of irrigation melkodispersnaja humidification combined with improved irrigation phytoclimate alfalfa plants in hot, sunny days is reduced to 100°C air temperature and the relative humidity is increased by 30-40 %. Ultimately, eliminating depression photosynthesis and thereby expended irrigation compared to the control one (I variant), in the II- th version 1,25, and the variant- III at 1,85 times less irrigation water. Accordingly, when variations of experiment II variant yield increases by 1.4 times, while conversely embodiment III decreases 0,93 times, i.e. 7,3%.

Key words: fogging, finely dispersed moisture, irrigation, irrigation rates, irrigation regimes, alfalfa yields.