АГРОХИМИЯ И СРЕДСТВА ХИМИЗАЦИИ СЕЛЬСКОГО ХОЗЯЙСТВА

УДК 631.8:631.45:633.0

ПРИМЕНЕНИЕ МИНЕРАЛЬНЫХ УДОБРЕНИЙ ПОД СЕЛЬСКОХОЗЯЙСТВЕННЫЕ КУЛЬТУРЫ В РЕСПУБЛИКЕ КАЗАХСТАН

С.Б. Кененбаев, С.Б. Рамазанова, Е.Т. Сулейменов

Казахский научно-исследовательский институт земледелия и растениеводства, 040909, Республика Казахстан, Алматинская обл. Карасайский р-н, п.Алмалыбак, ул. Ерлепесова 1, kazniizr@ mail.ru

Многолетними исследованиями установлена зависимость между интенсивностью применения минеральных удобрений и урожайностью сельскохозяйственных культур, показано влияние удобрений на агрохимические показатели орошаемых светло-каштановых почв и продуктивность культур свекловичного севооборота.

ВВЕДЕНИЕ

В стратегии развития Республики Казахстан до 2030 года четко определены задачи по обеспечению устойчивого развития аграрного сектора экономики и продовольственной безопасности страны, где особое внимание уделено рациональному использованию и разумному управлению природными ресурсами.

В этой связи повышение эффективности производства продукции растениеводства на основе рационального использования земельных ресурсов, повышения и сохранения плодородия пахотных земель является одной из приоритетных проблем отечественного земледелия, в решении которой важная роль отводится применению удобрениям.

ОБЪЕКТЫ И МЕТОДЫ

Анализ использования минеральных удобрений под сельскохозяйственные культуры проводился по данным Агенства Республики Казахстан по статистике. Длительный стационарный опыт проводили на базе 8-ми польного свекловичного севооборота на орошаемых светло-каштановых почвах. Варианты опыта: 1. Контроль (без удобрений); 2. NPK; 3. NPK+60т/га навоза.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Удобрения являются одним из главных факторов воздействия на продуктивность сельскохозяйственных культур. На основе анализа развития земледелия в странах Западной Европы Д.Н.

Прянишников показал, что в период средневекового трехполья (пар, озимое, яровое) в течение длительного времени (1770-1780 гг) урожайность зерновых в этих странах находилась на уровне 7 ц/га. Переход от зернового трехполья к плодосмену с культурой клевера и корнеплодов (пропашное, яровое, клевер, озимое) в 1840-1885 гг привел к удвоению урожаев, которые поднялись до 13-17 ц/га. Повышение урожаев до 30 ц/га против исходного уровня (7 ц/га) пришлось на 1885-1925 годы и произошло оно под влиянием введения минеральных удобрений на фоне клевера [1].

Новый качественный скачок в производстве зерновых культур в Западной Европе произошел в конце 70-х годов прошлого века за счет интенсификации земледелия. Высокая эффективность земледелия по всем показателям достигалась за счет использования высокопродуктивных сортов, распространения новых наукоёмких агротехнологий, включающих точное и своевременное проведение технологических операций, усовершенствованные системы защиты растений от вредных организмов и эффективного использования удобрений [2].

Производство минеральных удобрений в настоящее время является одним из наиболее развивающихся в мире. Начиная с 1950 года объемы производимых в мире удобрений увеличились почти в 10 раз и достигли к началу нового века

148,8 млн. т действующего вещества, треть из которых приходится на Китай (20,5 %) и Индию (9,4 %), около 15 % - на США, 8,1 % удобрений производит Канада, 7,5 % - Россия. В ассортименте производимых в мире удобрений свыше 60 % приходится на азотные, из которых 46 % - на долю мочевины. При этом на первое место в мире по производству азотных удобрений вышел Китай, который ежегодно вырабатывает 23,4 млн. т действущего вещества, что составляет 27,8 % от общемирового производства азотных удобрений [3].

Крупнейшими в мире производителями фосфорных удобрений являются США, Китай, Индия, Россия и Казахстан, на долю которых приходится около 75 % мировой добычи фосфатов. Две трети производимых в настоящее время фосфорных удобрений входит в состав комплексных, включающих азот, фосфор и калий. Это в основном аммофос, диаммофос, нитроаммофос, нитроаммофоска. Производство простого и двойного суперфосфатов составляет около трети объёма выпускаемых фосфорных удобрений. Производство калийных удобрений на 95 % представлено хлористым калием [3].

Наряду со странами Западной Европы и США, традиционно занимающими лидирующие позиции по объемам применения минеральных удобрений, быстрыми темпами растет их потребление в азиатских странах. В Китае начиная с 1980 года использование удобрений увеличилось в 2,4 раза и достигло к началу нового века 36,7 млн. т действующего вещества, что составляет пятую часть всех применяемых в мире (141,3) удобрений. Индия за этот период увеличила потребление удобрений в 3,3, Таиланд в 6,6, а Вьетнам в 12,5 раз. По интенсивности использования минеральных удобрений под сельскохозяйственные культуры лидирует Малайзия, где на гектар пашни вносится 836 кг действующего вещества, 768 кг/га применяет Коста-Рика, 651 кг/га - Ирландия, 520 - Нидерланды и 513 – Корея [4].

Систематический рост производства и потребления минеральных удобрений в мире стал основой небывалого роста урожайности сельскохозяйственных культур и позволил обеспечить западноевропейским странам к началу нового века перейти рубеж урожайности зерновых культур 60-70 ц/га, а среднемировая урожайность зерновых в этот период достигла 30 ц/га [4].

На пике химизации земледелия, который пришелся на середину 80-х годов прошлого столетия, общий объём применяемых в Республике Казахстан удобрений увеличился со 170,4 тыс. т. действующего вещества в 1965 г до 1039 тыс. т. в 1986 г., количество удобрений, внесенных на гектар пашни возросло за этот период с 3,6 до 29 кг NPK, а удобренная площадь составила 47 % от общей площади пашни, при 6,6 % в 1965 г. (рисунок 1)

Увеличение объёмов применения удобрений за этот период способствовало существенному улучшению обеспеченности пахотных земель республики основными элементами питания [5]. Если по результатам первого тура сплошного агрохимического обследования, проведенного в 1972 году, из общей площади обследованной пашни 72,3 % было отнесено к категории низкообеспеченных одним из важных элементов питания подвижным фосфором, 24,5 % - к среднеи только 3,2 % - к высокообеспеченным, то при повторном обследовании, проведенном через 15 лет (1987 г.), площадь почв низко обеспеченных уменьшилась до 44,5 %, больше стало почв средне- и высокообеспеченных (таблица 1).

Существенно улучшилась обеспеченность орошаемой пашни подвижным фосфором. Низкообеспеченных почв в этот период осталось менее трети от общей площади пашни, возросла доля почв со средней и особенно высокой степенью обеспеченности. По научным прогнозам ЦИНАО при условии сохранения тенденции темпов роста применения удобрений уже к 2000 году свыше 75 % пашни было бы средне- и хорошо обеспечены подвижным фосфором и лишь четвертая

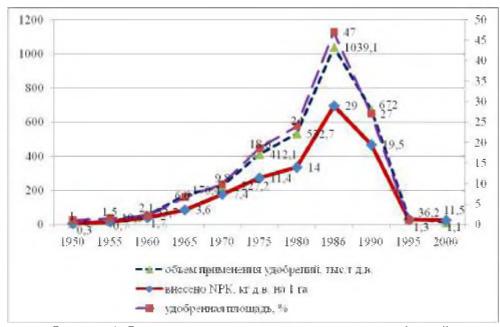


Рисунок 1. Динамика применения минеральных удобрений в Республике Казахстан (1950-2000 гг.)

Таблица 1 - Изменение в распределении пахотных почв по содержанию подвижных форм питательных веществ (в % от обследованной площади)

Сельскохозяйст	Обследова нная	Уровень содержания	Подвижный фосфор			Обменный калий		
венное угодье	площадь, тыс.га	питательны х веществ	1972	1975	1987	1972	1975	1987
		Низкий	72,8	68,8	44,5	2,2	4,1	1,9
Пашня	35505,3	Средний	24,5	26,4	40,5	7,3	8,8	6,4
		Высокий	3,2	4,8	15,0	90,7	87,1	91,7
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Низкий	-	58,9	28,6	-	9,8	8,6
Орошаемая	1856,0	Средний	-	23,4	30,9	-	19,9	21.3
пашня		Высокий	-	17,7	40,5	-	70,3	70,1

часть пахотных земель относилась к категории низкообеспеченных почв, сильно нуждающихся в применении фосфорных удобрений [5].

Обеспеченность почв обменным калием существенно не изменилась, что связано с достаточно высоким содержанием этого элемента питания в почвах республики. Из общего количества использованных в тот период удобрений основную часть составляли фосфорные, на долю которых приходилось 56,9 %, на долю азотных – 39,7 % и всего 3,4 % удобрений приходилось на долю калийных.

С ростом объёмов применения удобрений в республике за период с 1965 по

1986 год улучшилась обеспеченность пашни подвижным фосфором, что положительно сказалось на урожайности сельскохозяйственных культур. В годы с наибольшей интенсивностью применения удобрений (1986-1990) урожайность яровой пшеницы по сравнению с начальным периодом химизации (1961-1965 гг.) возросла с 6,1 до 10,1 ц/га, риса с 19,1 до 45,1 ц/га, кукурузы с 20,8 до 38,8 ц/га, сахарной свеклы с 235,8 до 288,0 ц/га, хлопчатника с 17,9 до 25,8 ц/га, картофеля с 75,0 до 106,2 и овощей с 66,1 до 170,0 ц/га (таблица 2).

Однако, начиная с 1987 года началось неуклонное снижение объёмов применя-

емых удобрений, продолжавшееся вплоть до 2000 года. Общее количество использованных в сельском хозяйстве удобрений уменьшилось за этот период с 1039 тыс. тонн действующего вещества в 1986 до 10.7 тыс. тонн в 2000 г., интенсивность их применения снизилась с 29,0 до 0,8 кг/га NPK, площадь пашни, удобренной минеральными удобрениями сократилась с 16557,9 тыс. га до 98,3 тыс. га (рисунок 1).

Резкое снижение уровня применяемых удобрений привело к падению урожайности сельскохозяйственных культур, которая уменьшилась в зависимости от культур на 8,8-52,1 %. В сравнении с периодом 1986-1990 гг урожайность зерновых культур за 1996-2000 годы уменьшилась на 14,4 %, пшеницы на 8,7 %. Особенно сильно снизилась урожайность подсолнечника, сахарной свеклы, кукурузы,

Таблица 2 – Динамика урожайности основных сельскохозяйственных культур в Республике Казахстан

<u> </u>	Годы							
Культура	1961-	1986	1986-	1991-	1996-	2001-	2006	2007
	1965		1990	1995	2000	2005		
Пшеница	6,1	10,6	9,2	7,6	8,4	10,2	11,3	13,0
Кукуруза, зерно	20,8	42,5	38,8	24,6	24,6	41,6	46,3	45,8
Рис	19,1	45,5	45,1	32,8	29,3	31,7	33,0	33,6
Сахарная свекла	235,8	279,0	288,0	115,0	138,0	199,2	240,8	248,3
Хлопчатник	17,9	25,9	25,8	20,1	17,4	21,8	22,2	22,1
Подсолнечник	-	8,7	9,9	3,6	3,6	6,2	5,9	5,9
Картофель	75,0	112,0	106,2	95,0	92,6	139,0	153,6	155,8
Овощи	66,1	170,0	164,6	109,0	119,6	179.4	191,1	200,3

риса, хлопчатника, овощей (таблица 2).

Исследованиями Казахского НИИ земледелия и растениеводства установлено, что длительное возделывание сельскохозяйственных культур без применения удобрений приводит к истощению почв, снижению плодородия, ухудшению обеспеченности почв доступными для растений элементами питания. Ведущая роль в формировании плодородия почв и повышении устойчивости земледелия отводится гумусу. Гумус служит источником питания растений. От содержания гумуса в почве во многом зависят физико-химические и биологические свойства почвы. Гумус почвы, его содержание и состав подвержены значительным колебаниям в зависимости от обработки почвы, режима влажности и аэрации, количества и качества растительных остатков, оставляемых сельскохозяйственными культурами.

Результаты исследований, проведенных на орошаемых светло-каштановых почвах показали, что длительное возде-

лывание культур свекловичного севооборота без применения удобрений приводит к снижению содержания гумуса в почве [6-8]. Так, на варианте без удобрений, уже к концу первой ротации севооборота содержание гумуса в пахотном и подпахотном слоях почвы уменьшилось против исходного соответственно на 0,22 и 0,44 % и составило 2,38 и 2,06 %. К концу третьей ротации содержание гумуса в верхнем пахотном слое уменьшилось против исходного уже на 0,28 %, а в конце пятой ротации на 0,37 %. В подпахотном слое содержание его к концу третьей ротации находилось на уровне 2,17 и к концу пятой ротации не изменилось (таблица 3).

При систематическом внесении полного минерального удобрения под культуры 8-ми польного свекловичного севооборота содержание гумуса в верхнем слое почвы к концу первой ротации несколько возросло и составило 2,69 %, против исходного 2,60 %. В нижнем слое почвы содержание гумуса уменьшилось, но в меньшей степени, чем на варианте без удобрений.

Таблица 3 - Влияние длительного систематического применения удобрений на содержание и запасы гумуса орошаемой светло-каштановой почвы (1961-2000 гг.)

Рамуруу олуу	Гумус, %					Запасы гумуса, т/га		
Вариант опыта								
	0-20	20-40	0-40	0-20	20-40	0-40		
Исходное содержание, 1961 г.	2,60	2,50	2,55	65,0	58,0	123,0		
Первая ротация (1961-1970 гг.)								
Без удобрений	2,38	2,16	2,27	55,7	50,5	106,2		
NPK	2,69	2,48	2,59	62,9	58,0	120,9		
	Третья ротация (1979-1988гг.)							
Без удобрений	2,27	2,17	2,22	60,4	57,7	118,1		
NPK	2,53	2,34	2,44	67,8	63,0	130,8		
Навоз 60 т/га+NРК	2,83	2,47	2,65	75,3	65,2	140,5		
Пятая ротация (1994-2000 гг.)								
Без удобрений	2,23	2,16	2,20	58,1	56,3	114,4		
NPK	2,50	2,35	2,43	65.1	61,1	126,2		
Навоз 60т/га+NPK	2,69	2,45	2,57	69,8	63,7	133,5		

В конце третьей ротации при применении полного минерального удобрения содержание гумуса в верхнем слое почвы составило 2,53 %, в нижнем слое снизилось на 0,16 % по сравнению с исходным. К концу же пятой ротации содержание гумуса в верхнем слое уменьшилось на 0,10 %, в нижнем на 0,15 %. При применении полного минерального удобрения совместно с 60 т/га навоза один раз за ротацию уже в конце третьей ротации содержание гумуса в верхнем слое возросло на 0,23 %, в конце пятой на 0,09 % против исходного, в нижнем слое незначительно снизилось соответственно на 0.03-0.05%.

Запасы гумуса в почве на варианте без применения удобрений в конце первой ротации как в верхнем, так и в нижнем слоях уменьшилось на 14,3 и 12,9 %. К концу третьей и пятой ротаций в верхнем слое они повысились, а в нижнем стабилизировались на уровне исходных величин. При применении полного минерального удобрения в течение первой ротации севооборота запасы гумуса в почве не удалось удержать на уровне исходных значений, тогда как к концу третьей ротации в пахотном слое запасы гумуса возросли, а к концу пятой

ротации стабилизировались на уровне исходных величин. В нижнем слое запасы гумуса возросли на 8,6 т/га в третьей и на 5,5 т/га в пятой ротации. При совместном применении минеральных удобрений и навоза достигнуто расширенное воспроизводство гумуса в почве, запасы его начиная с третьей ротации возросли как в верхнем, так и в нижнем слоях почвы (таблица 3).

Исходное содержание подвижного фосфора в верхнем слое почвы опытного участка находилось на уровне 24,0 мг/кг, что характеризовало их как среднеобеспеченные этим элементом питания. При возделывании культур свекловичного севооборота в течение ротации без применения удобрений содержание подвижного фосфора уменьшилось на 3,0 мг/кг в верхнем и на 5,2 мг/кг в нижнем слоях почвы против исходных значений (таблица 4).

При систематическом применении полного минерального удобрения содержание подвижного фосфора в почве уже к концу первой ротации увеличилось на 13,1 мг/кг почвы и достигло оптимальных значений. Совместное применение минеральных и органических удобрений обеспечило увеличение содержания подвижного фосфора в верхнем слое почвы

Таблица 4 - Влияние длительного систематического применения удобрений на содержание подвижного фосфора и обменного калия в орошаемой светлокаштановой почве

Danuary arriva	Подві	Обменный К₂О, мг/кг					
Вариант опыта	Слой почвы, см						
	0-20 см	20-40 см	0-20 см	20-40 см			
Исходное,1961 г.	24,0	19,5	525	470			
Первая ротация (1961-1970 гг.)							
Без удобрений	21,0	14,3	-	-			
NPK	37,1	19,4	-	-			
Третья ротация (1979-1988 гг.)							
Без удобрений	18,5	16,5	452	390			
NPK	37,0	37,2	472	440			
Навоз 60 т/га+NPK	52,0	52,3	590	450			
Пятая ротация (1994-2000 гг.)							
Без удобрений	16,9	14,0	449	418			
NPK	39,7	28,9	601	524			
Навоз 60 т/га+NPK	52,3	45,4	765	717			

до уровня высоких значений, в нижнем слое оно почти не изменилось [8, 9].

К концу третьей и пятой ротаций содержание подвижного фосфора в почве при возделывании культур севооборота без удобрений продолжалось снижаться, тогда как на удобренных вариантах в верхнем слое отмечена стабилизация содержания подвижного фосфора при применении только минеральных удобрений на оптимальном, при совместном применении минеральных и органических удобрений на высоком уровне.

Важно отметить, что при применении удобрений существенно улучшилась обеспеченность подвижным фосфором и нижних слоев почвы.

Длительное применение удобрений обеспечило улучшение калийного режима орошаемых светло-каштановых почв (таблица 4).

Удобрения, оказывая положительное влияние на питательный режим орошаемых светло-каштановых почв, способствовали повышению продуктивности культур свекловичного севооборота (таблица 5).

 Таблица 5 - Влияние длительного систематического применения удобрений на продуктивность свекловичного севооборота

Рамионт опита	Продуктивность 1 га севооборотной площади, ц.з.е.						
Вариант опыта	I ротация	III ротация	V ротация				
Без удобрений	88,0	60,9	43,1				
NPK	108,8	98,4	78,1				
NРК+ навоз 60т/га	-	85,0	82,3				

Ухудшение основных агрохимических показателей орошаемой светло-каштановой почвы при длительном возделывании культур без удобрений привело к резкому снижению продуктивности севооборота. Так, если к концу первой ротации с одного гектара севооборотной площади было получено 88,0 ц зерновых единиц (з.е.), то к

концу третьей ротации продуктивность гектара севооборотной площади снизилась на 30,8 %, а к концу пятой ротации более чем наполовину. В то же время продуктивность севооборота при применении только минеральных удобрений повысилась на 23,6 в первой, на 61,6 - в третьей и на 81,2 - в пятой ротациях. При совмес-

тном применении минеральных и органических удобрений продуктивность гектара севооборотной площади также превышала контроль на 39,6 в третьей и 91,0 % в пятой ротациях.

Урожайность зерна озимой пшеницы в пятой ротации при применении удобрений увеличилась более чем в 2 раза, при урожайности на контрольном варианте 23,9 ц/га, сахарной свеклы более чем в 3 раза, при урожайности на контроле 152 ц/га, кукурузы среднеспелых гибридов в 1,4, при урожайности на контроле 70,1 ц/га, сена люцерны почти в 1,5 раза при урожайности на контроле 110,6 ц/га. Существенно улучшилось при этом качество продукции - на 1,8-2,3 % возросло содержание сырого протеина в зерне пшеницы, на 2,7-2,8 % повысилась сахаристость корнеплодов, улучшилось качество зерна кукурузы и сена люцерны.

Полученные данные свидетельствуют о возможности направленного регулирования плодородия почв. Систематическое научно-обоснованное применение удобре-

ний позволяет поддерживать основные агрохимические показатели почв на оптимальном уровне и получать на этой основе стабильные урожаи качественной продукции растениеводства.

В целом по республике в последние годы, начиная с 2001 г. наметилась устойчивая тенденция роста интенсификации земледелия (рисунок 2). Общий объём использованных в сельском хозяйстве удобрений составил в 2007 году 589 тыс ц. в пересчете на 100 % действующее вещество, то есть увеличился по сравнению с 2000 годом в 6,8 раз. Из общего количества использованных в 2007 г. удобрений 63,7 % приходилось на долю азотных, 34,8 % на долю фосфорных и 1,5% на долю калийных, соотношение N:P:К в применяемых удобрениях составило 1,0:0,56:0,02. Наибольшее количество удобрений 547,6 тыс ц., или 93,7% было внесено под зерновые культуры, в том числе 334,5 тыс ц. под пшеницу, 22,8 тыс. ц. или 3,9 % общего объёма использованных удобрений было внесено под технические и 1,8 % - под картофель и овощи.

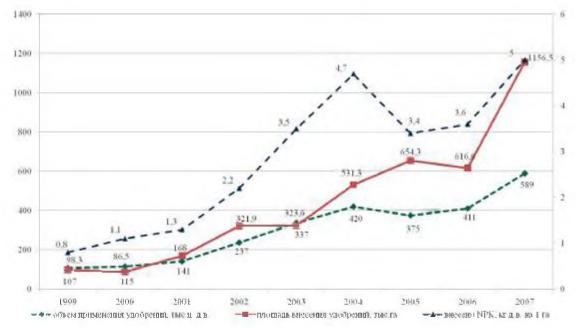


Рисунок 2 - Динамика применения минеральных удобрений в Республике Казахстан (1999-2007 гг.)

Удобренная сельскохозяйственными предприятиями республики зона пашни в 2007 г., по сравнению с 2000 годом, увеличи-

лась почти в 10 раз, уровень удобренности пахотных земель составил 5 кг NPK на гектар посевной площади. На гектар посевов

пшеницы сельскохозяйственными предприятиями в 2007 г. было внесено 4,0 кг NPK, хлопчатника - 51,4, картофеля - 77,8, сахарной свеклы - 94,9, овощей - 97,0, кукурузы - 98,7 и риса – 345 кг, тогда как в среднем за период 1996-2000 гг. было использовано значительно меньше – под пшеницу всего 0,4 кг/га NPK, под хлопчатник 50,9, картофель 14,2, сахарную свеклу 51,6, овощи 48,0, кукурузу 30,8, рис 127,6 кг, что положительно сказалось на росте урожайности сельскохозяйственных культур (таблица 2).

ЗАКЛЮЧЕНИЕ

Анализ данных удобренности почв республики и урожайности основных сельскохозяйственных культур за последние годы показал, что прослеживается устойчивая тенденция повышения урожайности по мере увеличения доз используемых под культуры удобрений. Многолетними исследованиями на орошаемых светло-каштановых почвах доказана прямая зависимость между при-

менением удобрений, обеспеченностью почв элементами питания и урожайностью сельскохозяйственных культур.

Для достижения высокой продуктивности и устойчивости земледелия практика использования удобрений в Республике Казахстан должна основываться на концепции создания и поддержания оптимального уровня содержания элементов питания в почве, в особенности азота и фосфора. Ведь по результатам агрохимического обследования, проведенного в последние годы около 95 % пахотных земель республики нуждаются в применении азотных и более половины их в фосфорных удобрениях. В этих условиях применение рациональных доз азотных и фосфорных удобрений под сельскохозяйственные культуры наиболее существенный резерв повышения урожайности сельскохозяйственных культур и улучшения качества продукции растениеводства.

СПИСОК ЛИТЕРАТУРЫ

- 1. Прянишников Д.Н. Азот в земледелии СССР. Популярная агрохимия. М. 1965. С. 147.
- 2. Кирюшин В.И. Точные агротехнологии как высшая форма интенсификации адаптивно-ландшафтного земледелия // Земледелие. 2005. № 6. С. 16.
- 3. Родионова И.А. Промышленность мира: территориальные сдвиги во второй половине XX века. М. 2002. 368 с.
- 4. Минеев В.Г., Бычкова Л.А. Состояние и перспективы применения минеральных удобрений в мировом и отечественном земледелии // Агрохимия. 2003. № 8. С. 5.
- 5. Мартьянова Е.А. Изменение обеспеченности почв подвижными питательными веществами и гумусом // Вестник сельскохозяйственной науки Казахстана. №9.1988. С. 23.
- 6. Имангазиев К.И. Агрохимические основы применения удобрений в свекловичном севообороте // Тр. Каз НИИЗ. Т.IX-X. Алма-Ата. 1970. С. 7-60.
- 7. Басибеков Б.С., Ажибаева С.Д. Изменение гумусного состояния и запасов азота светло-каштановой почвы в связи с длительным применением удобрений под культуры свекловичного севооборота // Сб. науч. тр. «Плодородие земель и факторы его повышения». Алма-Ата. 1987. С. 72
- 8. Рамазанова С.Б., Баймаганова Г.Ш., Сулейменов Е.Т. Применение удобрений, плодородие почв и продуктивность сельскохозяйственных культур на юго-востоке Казахстана // Вестник науки Акмолинского аграрного университета им. С.Сейфуллина. Т. 2. Астана. 2001. С. 117-120.
- 9. Торшина О.Б., Басибеков Б.С. Влияние систематического применения минеральных удобрений на агрохимические свойства светло-каштановой почвы и продуктивность культур свекловичного севооборота и бессменных посевов сахарной свеклы // Сб. науч. тр. «Повышение продуктивности пахотных земель на юге и юго-востоке Казахстана». Алма-Ата. 1979. С. 117.